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Non-static nuclear forces in a Kerr-Newman background 
space 

P M Radmore 
Department of Mathematics, Imperial College, London SW7 2BZ, UK 

Received 31 January 1978 

AbetrPd. In the Kerr-Newman background space, an explicit expression for the source 
term due to a particle moving along a geodesic near the event horizon in the equatorial 
plane of the black hole is found. This is used, together with the solutions of the Klein- 
Gordon equation near the event horizon (found elsewhere) to show that the meson field 
near the black hole vanishes as the source crosses the event horizon. 

1.Introduction 

In a recent series of papers (see Rowan and Stephenson 1976a, b, 1977 and Rowan 
1977), the Klein-Gordon equation for a massive scalar meson field has been 
examined in various background spaces. Rowan (1977) has extended the work of 
Rowan and Stephenson to the in-fall of an uncharged baryon down the axis of a 
charged rotating black hole described by the Kerr-Newman metric, and has shown 
that the field of the baryon source falls to zero as the source crosses the event horizon. 
By allowing the particle to move down the axis of rotation, Rowan was able to treat 
the in-fall as a series of quasi-static problems since the event horizon and the static 
limit coincide on the axis of rotation. 

In this paper we extend this work to the in-fall of a baryon along a geodesic in the 
equatorial plane of the black hole. This requires that the source term be modified to a 
time-dependent one, since the tidal forces inside the ergosphere destroy the static 
situation. By solving the geodesic equations near the event horizon and using the 
solution of the Klein-Gordon equation near the event horizon as found by Rowan and 
Stephenson (1977), we have again deduced that the field of the baryon falls off to zero 
as the particle crosses the event horizon. It has not been possible to solve the basic 
equation over the whole range owing to the breakdown of the uniform asymptotic 
method. The reason for this will emerge in the following analysis. 

2. Basic equations 

We start with the Klein-Gordon equation 

(n2 + w *)Q = 4 ~ f ( t ,  r, e, 4 )  
where 0 is the scalar field and f ( r ,  r, 6 , 4 )  represents a point source. In generally 
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covariant form (2.1) is 

Together with the Kerr-Newman metric in Boyer-Lindquist coordinates 

ds2 = T(dt - a sin2 8 d4)' - 7 [ ( r 2  + a') d 4  - a  dt]' -p dr2 - p 2  de2 
2 

(2.3) A sin2 e 
P P A 

where 

A = r 2 -  2Mr + a'+ Q2, p2=r2+a2cos2e ,  (2.4) 

equation (2.2) becomes 

[(r2+a2)2-Aa2sin2 e ]  a' a (A-a2 sin2 e )  a2 
A 

- 2a[A-  (r2  + a')] a2 
A a4 at 

Write 

@ = 1 dw(R1,,(r)S;"(8) eimb e-'"') 
1. m 

where S;"(e)= S ; " ( a 2 ( p 2 - ~ ' ) ,  cos e )  is the oblate spheroidal harmonic satisfying 

+htm-a2(p2-w2)cos2 @-$]S;"(e)=O (2.7) sin 8 

and Afm is the eigenvalue corresponding to S;"(8). Taking the normalisation 

C W d 4  [sin 8 delS;"(e)12 = 1 

and substituting (2.6)-(2.8) into (2.5), we see that Rfmw(r) satisfies 

a 'm + 2amw (a2 - 2Mr) + (r2 + a 2)2w2 -h lm-a  2 2  w -p2r2]Rlmw(r)  

= -2 l-1 dt eiwf cW d 4  p 2  sin eS;"(e) e-imbf(t, r, 8,4) de. 

A 

(2.9) 

3. The geodesic equations 

We take the equations of motion along a geodesic in a Kerr-Newman background 
space (Misner et a1 1973) and consider the case of motion confined to the equatorial 
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plane of a black hole. The equations become 

dr 
dh 

r2-  = JR, 

UP r2* = - (aE - L z ) + -  
dA A ’  

dt ( r2+a2)P 
A ’  dh 

r2-= -a (aE-L , )+  

where 

P = E(r2 + a’)- L,a, 

R =P2-A[ , i i2r2+(LZ-aE)2]  

and where f i  is the rest mass of the baryon, and E and L, are the energy at infinity and 
the angular momentum about the axis of rotation, respectively. 

Putting G = L, - aE, we get from (3 .2 )  

P = Er2 - aG, 

R = (Er2 - u G ) ~  - A(fi2r2 + G 2 ) .  

From (3 .1)  using (3 .3 )  we have 

ddJ 
dt  

G A  + a(Er2 - a G )  
aGA + ( r2  + a2)(Er2 - a G )  

-= 

and 

_-  dr A[(Er2-aG)2-A(,ii2r2+ G2)J1” 
dt aGA+(r2+a2)(Er2-aG)  * 

- 

(3 .3)  

(3 .4 )  

(3.5) 

We now confine our attention to motion near the event horizon r = r + =  
M + [ M 2  - (a2  + Q2)]”2  and assume that a2 + Q2 # M 2  so that r+ # r- = 
M - [ M 2 - ( ~ 2 + Q 2 ) ] 1 ’ 2 ,  

Putting 

Mx = r - r+ ,  2Md = r+ - r- (3.6) 
we have 

A = M 2 x ( x + 2 d ) .  (3 .7 )  

Substituting (3.6) and (3.7) into (3.4) and (3.5), we may expand the right-hand sides in 
powers of x to get 

U 
+ax + 0 ( x 2 )  d 4  

dt ( r : + a 2 )  
-= 

and 

dr dx 2dM2x 
- = M - = - ( ( r : + a 2 )  dt  dr + p x 2 )  + 0 ( ~ 3 ) ,  

(3 .8)  

( 3 . 9 )  
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taking the minus square root in (3.5), and where the constants a and 6 are given by 

(MG dr: - aEr: + a2Gr+) 2M 
(r: + aZ)’(Er: - aG)  

a =  

and 

Md(4E2r: -4aGErt-2Md$’r: -2MdG’) 
(Er: - aG)’ 

- 2Md(4Er: +2a2Er+-2aGr++2aGMd)+ 
(r: + a’)(Er: - a G )  

for Er: - aG # 0. 

(3.10) 

(3.11) 

4. The source term 

To get an explicit expression for f ( t ,  r, 0, #), we choose, following Persides (1974), 

(4.1) 
I 

U 
f ( t ,  r, e, 4) = g- 6% - r‘)  

where U’ = dt/ds along the trajectory of the particle r‘(t)= ( r ’ ( t ) ,  d ’ ( t ) ,  # ’ ( t ) )  and g is 
the source strength. To calculate l / u o  we first put (3.6) and (3.7), together with 
8 = ~ / 2 ,  into the metric (2.3), obtaining 

f( [(Mx + r+)2 + a’]- - a (1-a$)2-(Mx+r+) dt 

- (Mx + r+)2 dn 
M’x(x +2d)M (dt) 

Then substituting (3.8) and (3.9) into (4.2), we see that to the second order in x,  

($j)2 = ($)2 = yx 2 (4.3) 

where the constant y is given by 

(4.4) 
(2M2r: -8dM3r+) - (4adM’a +2r:P) - 1 2Mar+ 

Y =  ( r :  +a212 (rI + a 2 )  

On substituting into (4.4) the expressions for a and p from (3.10) and (3.11), we find, 
after considerable algebra, that y is given simply by 

4d2M4fi2r4, 
(r+ + a2)*(Er: - aG)’ Y =  2 (4.5) 

so that 

where 
2dMfir: 

(r: + a2)(Er: - aG)‘ 
K =  (4.7) 
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From (4.1), using (4.6), the source term can be written 

f ( t ,  r, 8,d) = gK(r - r+)S(r  - r0(40))S(d - do(t))S(B -b) (4.8) 

where, from (3.8) and (3.9), 

(4.9) 

(4.10) 

Hence the right-hand side of (2.9) becomes on substituting (4.8) 

-2gK(r-r+)S(r-r0) I eio' dt 

After performing the 8-integration (4.1 1) becomes 

-2gKr2(r - r+)S;"($.rr))S(r - ro) I eiw' dt 1 e-im4S(d - do(t)) dd.  

Now from (4.9) 

lm eio' dt lo2' e-im4S(cj - do(t)) d d  

05 Z T  

d d  u p z  sin 8S;"(8)e-im4S(d -do)S(8-f.rr)d8. 
-m 

(4.11) 

W 2 7  

(4.12) 
-W 

-W 

(4.13) 

so that (4.12) becomes 

K 
a -4.rrg-(r: +a2)r2(r -r+)s;"($.rr)S(r-ro) .  (4.14) 

Finally equation (2.9) becomes 
a2m2+ 2amw(Q2-2Mr)+ (r2+ a 2 2  ) w 2 

A 

K 
a = -4.rrg-(r: +a2)r2(r  - r + ) s ; " ( $ ~ ) S ( r  -io). (4.15) 

5. The radial equation 

Rowan and Stephenson (1977) have shown that after defining x and d by 

Mx = r - r+, 2Md = r+ - 1- (5 .1)  
and writing 

R l m w ( x ) = Z ( x ) [ x ( x  +2d)]-"2, (5.2) 
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substitution of (5.1) and (5 .2 )  into (4.15), leads to (for r f ro) 

D 
= 0 (5.3) 

dx 

where A, B, C and D are constants. It has not been possible to solve (5.3) over the 
whole range 0 =s x < 00 due to the breakdown of the uniform asymptotic method. This 
is due to the fact that the method depends on the existence of a large parameter in the 
differential equation which we do not necessarily have in (5.3) since w may be close to 
or equal to p. However, we may use the solutions obtained by Rowan and Stephen- 
son for x + 0 (that is r + r+) .  These are 

where 

F =  ( M 2 ( p 2 - 0 2 ) - - - -  C 
4M2d2 2M2d 

( 5 . 5 )  

provided F # 0. The case of F = 0 was treated separately and we will not repeat the 
solutions here. 

We now integrate (4.15) across the singularity and impose continuity of Rlm(r) at 
r = ro to get 

where A. = ( ro - r+)(ro - r-). 
Then for ro near r+ we have 

where R ( l )  and R(2, are given by (5.4). If we now let ro+ r+ we see from (5.7) that 
RIm(r) (for ro S r )  tends to zero since R ( l ) ( r ~ )  either tends to zero if f i  is real, or is 
bounded if 6 is complex. Provided the series for Q, is uniformly convergent, Q, -* 0 as 
ro+ r+.  We note that Q, here is an expression for the scalar field near the event horizon 
since (5.4) are solutions of ( 5 . 3 )  only for r near r+. 

6. Special cases 

The case where a 2 + Q 2 = M 2  must be considered separately since d=O and 
consequently from (3.9) the term of order x in dx/dt is zero. To simplify the algebra, 
we consider the case of an extreme Kerr black hole, so that a = M and Q = 0. 
Expanding dd/dt  to order x 2  and dxldt to order x4 and substituting these into (4.2) 
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w i t h d = O a n d a = M w e f i n d  

to order x4. Hence 

1 fi(r-M)2 _-  
U O - 2M(EM - G) 

which can be used in place of (4.6). 
The homogeneous radial equation becomes 

where 

M x z 1 - M  Z(X) 
R m w  (x) = -, 

X 

and the constants A, g, c and b are given by 

A = 4 M 2 w 2 - 2 M 2 p 2  

B = ~ M ~ ~ ~ - M ~ ~ ~ - A ~ ~  
c = 8M2w2-4Mmw 

b = 4M2w2 -4Mmw + m2. 

The relation between w and m is now 

w = m/2M 

and on substituting (6.6) into (6.5), we find 

A = m 2 - 2 M 2 p 2  
$ j=z  4m 2 -  M ~ ~ ~ - A ~ ~  

C = b = O .  

Equation (6.3) now becomes 

where 

N = M2w2 -am2. (6.9) 
After defining 

77 =2N'12x (6.10) 

and substituting (6.10) into (6.8) we see that (6.8) has solutions in terms of Whittaker 
functions 

Z = Mx,*fi(~)  (6.11) 
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where 

- 2  1 - m = x - B .  A 
=21/” 

For the case N = 0 we get 

(6.12) 

(6.13) 

where 4, ICE are the modified Bessel functions of order cT of the first and second kind 
respectively and 

1 -4B, p 2  = -44. (6.14) 

7. Conclusions 

The success of the Liouville-Green asymptotic method when used to solve the radial 
equation for a massive scalar meson field (Rowan and Stephenson 1976a, b, Rowan 
1977), and also when applied to the Schrodinger equation with a Gaussian potential 
(Stephenson 1977), depended on the appearance of a large parameter in the differen- 
tial equation. This was due, in the first case, to the non-zero rest mass of the 7r-meson. 
When considering the most general black hole, solutions of the radial equation over 
the whole range are known only in special cases (Rowan 1977, Linet 1977); the 
equation may no longer contain a large parameter and in general will have four 
turning points. Although in principle it would be possible to match the solutions in the 
five regions, these problems together with the complexity of the differential equations 
for the geodesics give rise to great difficulties in any further work in this direction. 
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